Adjusting to User's Style in Dialogue Systems

Margus Treumuth Margus Ojanurme

The Fifth International Conference Human Language Technologies — The Baltic Perspective Tartu, Estonia, October 4–5, 2012

Outline

Basics

- Previous Work
- Current Experiment
- Conclusion

Basics

- A dialogue system (DS) a type of user interface (UI) where linguistic features act as UI controls for selecting data in software applications.
- The DS is intended to converse with a human, with a coherent structure:
 - turn-taking
 - initiative
 - significant silence
 - manners

Text-Based DS

- User input is a written request to the dialogue system in a natural language and the output of the system is a written answer to the user in the same language.
- Incl. optional speech synthesis.
- No speech recognition.

Previous work

- Web based DS framework to build dialogue systems for Estonian language
- Framework features:
 - automated spell check of user input
 - morph. analysis stems in rules
 - solution to the word-order problem
 - human-assisted chat
 - sms notification
 - speech synthesis integrated
 - asynchronous model

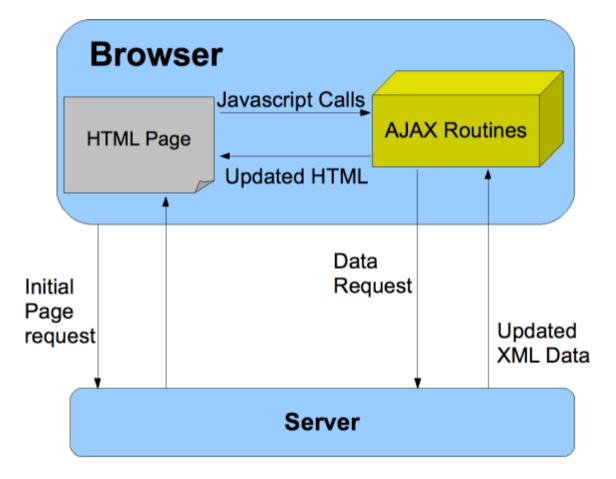
A sample conversation with a DS

16:12.41	User	mul on alalõuas eemaldatud hammas, juba 20 aastat tagasi
		I have a tooth removed from the lower jaw 20 years ago
16:12.57	User	kas on võimalik sinna implanaati panna
		is it possible to get a dental implant
16:13.00	System	põhjalikum info on siin: [loe implantaatidest]
		more information can be found here [read about dental implants]
16:13.10	System	üks hetk, kohe räägin teile lühidalt implantaadi paigaldusest
		just a moment, I'll tell you about the installation of dental implants

DEMO – www.dialoogid.ee

<12:41 Sina>: <12:41 Alfred	betkel on Tartu k palun ole vait hetk b: vait jään siis, k b: see võib ka täits	eks ui saab öeldud, mi	is öelda on :)	lmi	Vesteja: Alfred - sees Iulita hääl sisse
Sina:				>>	

The Asynchronous Communication (1)


Stuck in input phase problem.

Both parties can:

provide input at any given moment,

- take any number of sequential turns without waiting for the other party to acknowledge each turn.
- Real-time user-initiated (or system initiated) interruptions.

The Asynchronous Communication (2)

Spell-Checking and Error Correction

String Similarity: Jaro-Winkler

Domain Lexicon

- contains the words from the patterns
- compare lexicon with input
- language independent

Why not Levenshtein? Jaro-Winkler gives more favorable ratings to strings that match from the beginning.

Need to improve the spell checker

add all forms to lexicon (not just lemmas)
 "valutama" generates:

- valutab
- valutas
- **...**

this gives us a better lexicon and similarity to input can be higher

Word order (1)

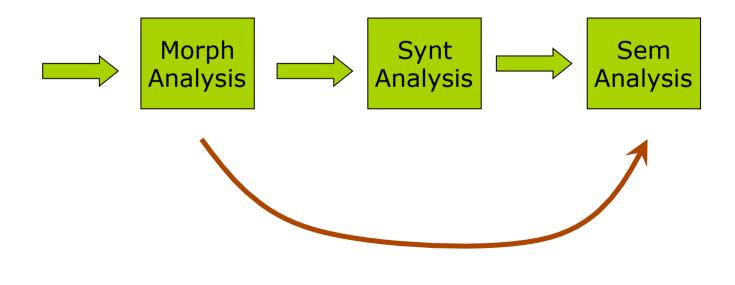
Need to be able to match both of these:

- hammas valutama
- valutama hammas
- Pattern would be:
 - (hammas valutama) | (valutama hammas)

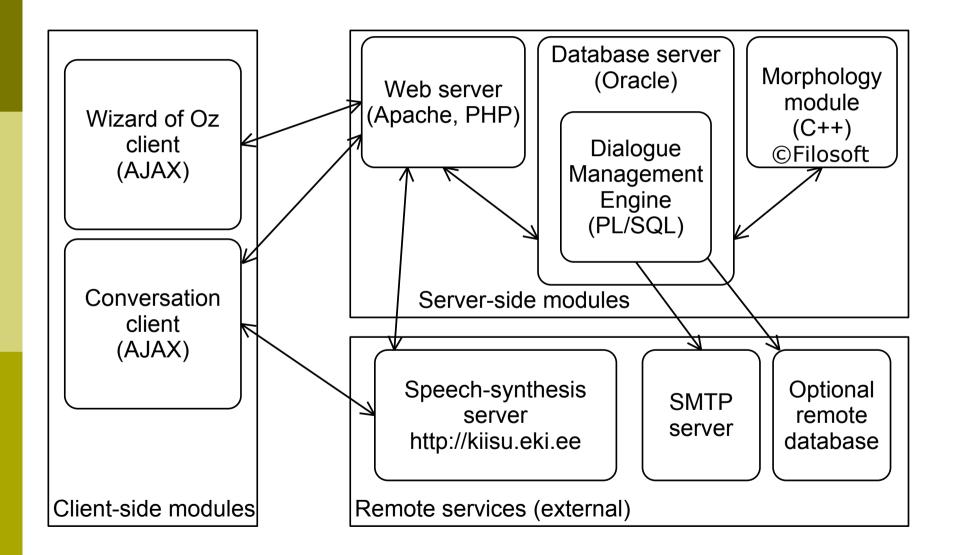
$$\mathbf{P}_3 = 6 \quad (w_1 w_2 w_3) | (w_1 w_3 w_2) | (w_2 w_1 w_3) | (w_2 w_3 w_1) | (w_3 w_1 w_2) | (w_3 w_2 w_1)$$

 W_i can be a regular sub-expression

P₄ = 24


solution: use permutations of input if set so in the pattern

Pattern: hammas valutama IGNORE_WORD_ORDER: YES



SUBJECT = hammas VERB = valutama

Claim: The word order problem can be solved without complete syntactic analysis.

The client-server model of the ADS framework

Goal of the new experiment

Can we adjust to user's style?

- capitalization
- typing speed
- slang
- Would it make a difference in user experience?

Motivation

□ The users seemed to complain about it.

- too slow
- too fast
- don't like capitalization
- do like capitalization

Implementation

We implemented the new features.

- speed module
- capitalization module
- □ Then created a sample system.
- Tested it on 15 users.
- □ Finally, we had them fill out a form.

Results

- Users liked it when DS used their speed/ style.
- Some users prefer faster response even if they are slow in typing.
- Some users prefer correct capitalization even if they don't use it.
- Surprisingly the users claim to use correct capitalization in CHAT, in reality 60% of the users don't.

Conclusion

We decided to accept commands from the user:

- "Please type faster",
- "Slow down a bit".

We could use correct capitalization always.