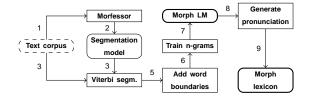
Adaptation of Morpheme-based Speech Recognition for Foreign Entity Names


André Mansikkaniemi and Mikko Kurimo

Aalto University School of Science Department of Information and Computer Science

October 5, 2012

Statistical morph-based language models

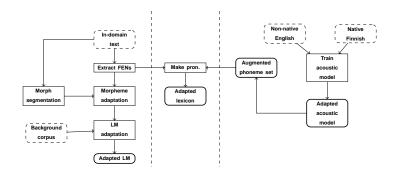
Morph n-gram examples:

- <w> expect ing <w> un expect ed ness <w>
- <w> oli <w> oikea staan <w> yllättävä n <w> hyvä <w>

Morph-based language models for ASR

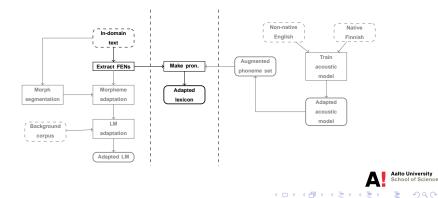
- Statistical morph segmentation successfully used to tackle OOV problem in speech recognition for morphologically rich languages (Finnish, Turkish, Estonian) [1]
- High recognition error rate still remains for foreign entity names (FENs) [2]

[1] M. Creutz, T. Hirsimäki, M. Kurimo, A. Puurula, J. Pylkkönen, V. Siivola, M. Varjokallio, E. Arisoy, M. Saraçlar, and A. Stolcke, Morph-based speech recognition and modeling of out-of-vocabulary words across languages, ACM Trans. Speech Lang. Process., vol. 5, no. 1, pp. 1-29, 2007.
[2] T. Hirsimäki and M. Kurimo, Analysing Recognition Errors in Unlimited-Vocabulary Speech Recognition, Proc. NAACL-2009, pp. 193-196, 2009.



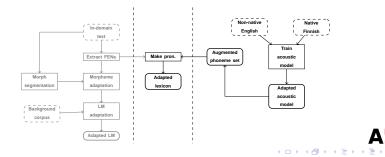
• Causes of high FEN error rate in morph-based ASR

- Erroneous pronunciation models
- Out-of-domain or out-of-date background LM
- Oversegmentation of foreign words (specific for statistical morph-based models)
 - Examples: mcafee \rightarrow m + cafe + e, reading \rightarrow re + a + ding
 - Makes pronunciation modeling difficult and unreliable


Adaptation environment for improving FEN recognition

Lexicon adaptation

- Extract foreign words from in-domain text
- Generate pronunciation rule
- Add to lexicon

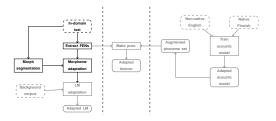


Acoustic model adaptation

- Train acoustic model with English sentences spoken by Finnish speakers
- Augment native phoneme set with most common non-native phonemes

Phoneme	Word
СН	cheese
JH	george
SH	she
TH	theta

Use augmented phoneme set to generate pronunciation rules for foreign words


Aalto University

æ

School of Science

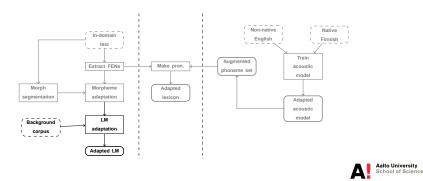
Morpheme adaptation

- Oversegmented foreign words in in-domain text restored back in to their base forms
- sta dium → stadium com mon we al th → commonwealth
- Enables easier pronunciation modeling

Alternative is morph-aligned pronunciation (morph pron.)

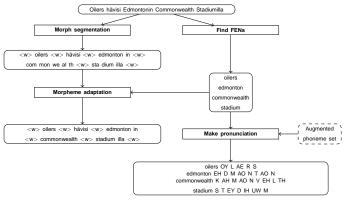
 Align pronunciation rule of a whole word on to separate morphs using maximum-likelihood alignment

Language model adaptation


Linear interpolation used to the adapt background LM P_B (w|h) with in-domain LM P_i (w|h)

$$P_{adap_i}(w|h) = \lambda P_i(w|h) + (1-\lambda)P_B(w|h)$$
(1)

(日)


æ

• Value of adaptation weight λ determinded beforehand

Example

Aalto University

Experiments

System&Models

- Aalto speech recognizer [5]
- Background text corpus of 70 million words
 - Morph segmentation model
 - Background LM (n=12, 30k morph vocabulary) trained on segmented corpus with variKN toolkit [6]
- Audio corpus with 20h of speech (Finnish)
 - Baseline acoustic model

Evaluation data

- Finnish radio news segments in 16kHz audio
 - General news set: 32 segments, 8271 words, 4.8% FENs
 - Sports news set: 43 segments, 6466 words, 7.9% FENs
- Spoken document retrieval set
 - General news: 1609 sentences, 4.0% FENs
 - 171 queries

[5] T. Hirsimäki, J. Pylkkönen, and M. Kurimo, Importance of High-order N-gram Models in Morph-based Speech Recognition, IEEE Trans. Audio, Speech and Lang., pp. 724-732, vol. 17, 2009.

[6] V. Siivola, T. Hirsimäki and S. Virpioja, On Growing and Pruning Kneser-Ney Smoothed N-Gram Models, IEEE Trans. Audio, Speech and Lang., Vol. 15, No. 5, 2007.

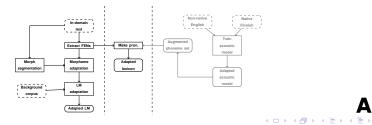
Experiments

LM adaptation data

- Collected manually from the Web
- On average 2-3 articles per topic featured in the news segments
 - 120 000 words of text gathered for general news set
 - 60 000 words of text gathered for sports news set
 - 60 000 words of text gathered for spoken document retrieval set

AM adaptation data

 English sentences spoken by native Finnish speakers, 70 minutes of 16 kHz audio

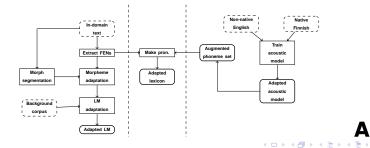

Results - Speech recognition task

Lexicon, LM, and morpheme adaptation

Baseline acoustic model					
Adaptation method		Results			
		General News		Sports News	
Primary	Additional	WER[%]	FENER[%]	WER[%]	FENER[%]
-		21.7	76.8	34.1	80.9
Lexicon		21.7	76.6	34.0	80.7
	-	20.5	68.0	32.1	70.0
LIN (λ = 0.1)	Lexicon	20.4	67.8	32.1	70.4
	Morpheme + Lexicon	19.9	55.7	30.1	52.9
	Lexicon (morph pron.)	20.7	57.9	31.6	54.2

WER = Word error rate

FENER = Foreign entity name error rate



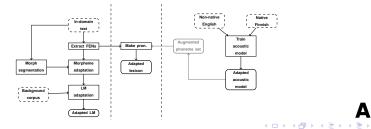
Results - Speech recognition task

• AM adaptation with augmented phoneme set

Adapted acoustic model with augmented phoneme set (CH,JH,SH,TH)					
Adaptation method		Results			
		General News		Sports News	
Primary	Additional	WER[%]	FENER[%]	WER[%]	FENER[%]
-		23.0	77.8	34.7	81.5
LIN ($\lambda = 0.1$)	Lexicon	22.0	64.5	31.3	61.7
	Morpheme + Lexicon	21.6	56.9	30.6	53.8

Aalto University

School of Science


Results - Speech recognition task

AM adaptation with native phoneme set

Non-native phonemes mapped to closest native diphone or triphone context

 $\bullet \ "S" \rightarrow "sh", "C" \rightarrow "tsh", "D" \rightarrow "dj", "T" \rightarrow "th"$

Adapted acoustic model with native phoneme set					
Adaptation method		Results			
		General News		Sports News	
Primary	Additional	WER[%]	FENER[%]	WER[%]	FENER[%]
-		21.6	77.3	33.5	80.5
LIN ($\lambda = 0.1$)	Lexicon	20.0	59.4	29.9	60.7
	Morpheme + Lexicon	19.5	51.6	29.1	52.1

Aalto University School of Science

æ

Results - Speech retrieval task

ASR results

Baseline acoustic model				
Adaptation method		Results		
		SDR eval. set		
Primary	Additional	WER[%]	FENER[%]	
	-	29.9	64.4	
LIN ($\lambda = 0.1$)	Lexicon	29.2	50.4	
	Morpheme + Lexicon	29.3	51.7	

Ranked Utterance Retrieval results

Mean Average Precision (MAP)

System	Indexing			
System	Baseform	Morph	Combined	
Baseline	0.4643	0.6296	0.6861	
LIN + Lexicon	0.4651	0.6317	0.6915	

Conclusions

Adaptation framework improves recognition of foreign words

Positive effect on FEN recognition

- LM adaptation
- Lexicon + Morpheme adaptation
- Morph-aligned pronunciation
- AM adaptation (native phoneme set)

Future work

- Fully unsupervised adaptation framework (partially implemented [7])
- Adaptation of acronyms

[7] André Mansikkaniemi and Mikko Kurimo. Unsupervised vocabulary adaptation for morph-based language models. In Proceedings of the NAACL 2012 Workshop on the Future of Language Modeling for HLT. ACL, June 2012.

