A Trivial Method for Choosing the Right Lemma

Heiki-Jaan Kaalep, Riin Kirt, Kadri Muischnek

University of Tartu
Problem area: corpus and lexicon

• What is the vocabulary of a text (or a corpus)?
• What words (=lemmas) are used?

 lemma (=base form, citation form, lexicon headword):

 • sg nom for nouns, adjectives, pronouns
 • infinitive for verbs

NB! Non-changeable words pose no problem (always the same lemma)
Plan

• Lemma ambiguity in standard corpus processing workflow
• Rule-based, regular morphology of Estonian
• Text-based evidence for lemma disambiguation
Standard corpus processing workflow

1. Pre-processing (segmentation etc)
 - Winds
 - Jäägi

2. Morphological analysis (incl. guessing)
 - wind + s N [wind] ‘air in motion’
 - jää + gi N sg nom ‘ice’
 - V [wind] ‘ventilate’
 - jää + gi N sg gen ‘ice’
 - V [wʌind] ‘twist’
 - jääk + i N sg gen ‘remainder’
 - N [wʌind] ‘act of twisting’
 - jää + gi V ‘stay’

Winds N proper
 - Jäägi N proper

3. POS disambiguation (≈ morphological disamb.)
 - wind + s N [wind] ‘air in motion’
 - jää + gi N sg gen ‘ice’
 - N [wʌind] ‘act of twisting’
 - jääk + i N sg gen ‘remainder’

4. WSD (≈ lemma disambiguation)
 - wind + s N [wʌind] ‘act of twisting’
 - jääk + i N sg gen ‘remainder’
Agglutinative, inflective language: morphological disambiguation = POS + lemma disambiguation?

wordform = lemma + morphosyntactic tags

1 / many
1 / many

kuus kuu+s N sg iness ‘month’ left left Adj
kuus Card sg nom ‘six’ leave V
jää jää N sg nom ‘ice’ sheep sheep N sg
jäägi jää+gi N sg nom ‘ice’ winds wind N [wind]
N sg gen ‘ice’ N [wʌind]
V ‘stay’ V [wind]
jääk+i N sg gen ‘remainder’ V [wʌind]

Estonian corpus tagging

1. Find all the possible morphological analyses and lemmas of all the words; guess if necessary

2. Morphological disambiguation. Choose the most likely analyses, based on the sentential context (grammatical tag sequence)

⇒ 1.5% tokens with unique tags, multiple lemmas

⇒ Liisiga
 Liis + ga N prop sg komitative
 Liisi + ga N prop sg komitative

jäägi
 jää + gi N sg gen
 jääk + i N sg gen
Sources of lexical ambiguity

1. Homonymous case forms in the dictionary
 - jäägi => jää+gi / jääk+i sg gen ‘ice / remainder’
 - teod => tegu+d / tigu+d pl nom ‘deeds / snails’

2. Guessed lemmas from word forms
 - ...erlaadid => ...erlaat+d / ...erlaad+d pl nom

3. Guessed proper noun lemmas
 - Liisi => Liis+i / Liisi
 - Liisiga => Liis+ga / Liisi+ga

4. Parallel forms in singular nominative in the dictionary
 - päikene = päike ‘sun’, manner = mander ‘continent’
Rule-based guessing is based on regular inflection (simplex words)

CVCCV ratsu, CVVCV Liisi

<table>
<thead>
<tr>
<th>sg nom</th>
<th>sg gen</th>
<th>sg part</th>
<th>sg illative</th>
<th>pl nom</th>
<th>pl part</th>
</tr>
</thead>
<tbody>
<tr>
<td>ratsu</td>
<td>ratsu</td>
<td>ratsut</td>
<td>ratsusse</td>
<td>ratsude</td>
<td>ratsusid</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X+t</td>
<td>X+sse</td>
<td>X+de</td>
<td>X+sid</td>
</tr>
</tbody>
</table>

Liisi, Liisi, Liisit, Liisisse, Liiside, Liisisid

VVC siid, Liis, VCC[C] link

<table>
<thead>
<tr>
<th>link</th>
<th>lingi</th>
<th>linki</th>
<th>linki</th>
<th>linkide</th>
<th>linke</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_s</td>
<td>X_w+ i</td>
<td>X_s+ i</td>
<td>X_s+ i</td>
<td>X_s+ ide</td>
<td>X_s+ e</td>
</tr>
</tbody>
</table>

Liis, Liisi, Liisi, Liisi, Liiside, Liise
How to choose the right lemma?

First idea: probability

... Where would you get the prob estimation from?

 Corpus similarity problem (ice /remainder)
 You haven’t seen OOV (incl. names) before...
How to choose the right lemma?

Idea: look at a wider context, perhaps there is some evidence?

Algorithm
1. Make a frequency list LL of all the lemmas (in this text); if a word has multiple lemmas, include them all (both Liis and Liisi)
2. For every token with multiple lemmas, keep only the most frequent one from LL (Note this is quite opportunistic)
Example

1. Text:
 Liisiga Liisit

2. Analyzed and disambiguated:
 Liisiga => Liis + ga / Liisi + ga
 Liisit => Liisi + t

3. Frequency list LL:
 Liis 1, Liisi 2

4. Lemma chosen:
 Liisiga => Liisi + ga
Evaluation

110,000 tokens (fiction, newspaper, science)

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Ambiguous from the dictionary</th>
<th>Ambiguous from the guesser</th>
<th>Proper names from the guesser</th>
<th>Parallel forms in the nominative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial lemma ambiguity</td>
<td>1670</td>
<td>620</td>
<td>280</td>
<td>640</td>
<td>130</td>
</tr>
<tr>
<td>Disamb-ed</td>
<td>1190</td>
<td>530</td>
<td>220</td>
<td>340</td>
<td>100</td>
</tr>
<tr>
<td>Correct</td>
<td>1120</td>
<td>500</td>
<td>190</td>
<td>330</td>
<td>100</td>
</tr>
<tr>
<td>Erroneous</td>
<td>80</td>
<td>30</td>
<td>40</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Unchanged</td>
<td>480</td>
<td>90</td>
<td>60</td>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>Precision</td>
<td>0.94</td>
<td>0.94</td>
<td>0.86</td>
<td>0.97</td>
<td>1.0</td>
</tr>
<tr>
<td>Recall</td>
<td>0.67</td>
<td>0.81</td>
<td>0.68</td>
<td>0.52</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Why does it work?

• Thanks to data sparcity.
• One sense per discourse!
 – But how do you define discourse? What is the right text span?
 – Go from smaller texts to larger; several iterations
• Rule-based, consistent guesser
 – But if the sentential disambiguator makes an error, it may ruin the frequency statistics
• Worry about evidence, not probability
Final thoughts

• Real texts require tools that do not rely on lexicons only
• Looking beyond sentence is easy and useful
 – Used the method for tagging 200 M corpus.
• Use the evidence, don’t guess!
• How language-specific is this approach? Is the lemma ambiguity a complete non-problem for, say, Latvian?