Speech Processing Technologies in Quaero: application to multimedia search in unstructured data

Lori Lamel

lamel@limsi.fr

HLT 2012 October 5, Tartu

- Quaero vision and objectives
- Organizing unstructured data, multimedia & multilingual search (text, audio, music, image, video)
- Speech Processing Technologies
- Demos
- Conclusions and outstanding challenges

- 27 partners
- Technologies to organize multimedia and multlingual contents
- 6 application projects (Technicolor, France Telecom, Jouve, Exalead, Yacast, ...)
- A shared research project: core technology cluster
- A corpus project (data collection and annotation, evaluation data)

- Quaero initiative dates from 2004 (project started in 2008)
- What was the Web like in 2004?
 - no Youtube, no Facebook, no Twitter, no Google Books
 - multimedia content was much more limited (ex. heavily compressed video)
- Even today most of the information is unstructured (ex. scanned books, audio, video)
- We can store everything but don't really know how to access it

- Need solutions to organize and search unstructured data
- Multilingual and multimedia context (text, speech, music, image, video)
- Quaero approach
 - Statistical methods for all modeling and decision problems
 - Application driven

Improve state-of-the art in automatic processing of multimedia/multilingual documents

Text, Speech

Question answering, speech recognition, language recognition, translation, semantic annotation

Music

Music genre and mood identification, source separation, fingerprinting

Image

Image identification (eg. face, object, adult content, ...), image clustering

Video

Segmentation, person and object tracking, event detection, motion recognition

Search engine

Searching multimedia data, search by similarity (image, music, ...), content recommendation

- Processing all styles of data (professional and amateur documents)
- Covering most European languages

Quiz: How	many	languages in EU?	
23	32	60	

- Giving real answers to questions
- Reducing the gap between human and machine performance
- Creating successful applications using imperfect technologies

- Spoken language processing technologies are key components for indexing and searching audio and audiovisual documents
- Speech is ubiquitous in multimedia data
- Underlying written representation (lacking for image and video)
- Developing core speech processing technologies
- Reduce gap between machine and human performances
- Develop technology usable for targeted applications and languages
- Reduce development and porting costs
- Applications: audiovisual media analysis, media monitoring (radio, TV), audiovisual archive indexing, captioning, speech analytics, ...

Speech Processing Technologies (2)

- Speech-to-text transcription (STT)
 - KIT, LIMSI, RWTH, Vocapia Research
 - Main Quaero languages: English, French, German
 - Progessive increase in languages: assessed for 9 languages
 - Cover all European languages (plus Arabic and Mandarin)
- Speaker diarization
 - KIT, LIMSI, Vocapia Research
 - "Who spoke when": speaker segmentation and clustering
 - Preprocessing for ASR and enriched transcription
 - Political Speaker Tracking task
 - Cross-show Speaker Diarization
- Language Identification
 - LIMSI

Extracting Information from speech

cnrs

```
<?xml version="1.0" encoding="UTF-8"?>
<AudioDoc name="doc2" path="doc2.wav">
```



```
<Speaker dur="38.58" gender="2" spkid="FS2"/>
</SpeakerList>
```

```
<SpeechSegment stime="4.12" etime="9.13" spkid="MS1" lang="eng-usa">
<Word stime="4.12" dur="0.12" conf="0.934"> co </Word>
<Word stime="4.27" dur="0.12" conf="0.934"> co </Word>
<Word stime="4.49" dur="0.38" conf="0.934"> production </Word>
<Word stime="4.87" dur="0.08" conf="0.934"> of </Word>
<Word stime="4.87" dur="0.08" conf="0.934"> to </Word>
<Word stime="4.9" dur="0.08" conf="0.934"> to </Word>
<Word stime="5.15" dur="0.39" conf="0.934"> be </Word>
<Word stime="5.54" dur="0.26" conf="0.934"> be </Word>
<Word stime="5.54" dur="0.26" conf="0.926"> world </Word>
<Word stime="5.64" dur="0.26" conf="0.44"> Service </Word>
<Word stime="5.47" dur="0.66" conf="0.568"> PRI </Word>
<Word stime="6.47" dur="0.66" conf="0.568"> PRI </Word>
<Word stime="6.47" dur="0.14" conf="0.917"> and </Word>
<Word stime="7.48" dur="0.14" conf="0.917"> and </Word>
```

Extracting Information from speech

```
cnrs
```

```
<?xml version="1.0" encoding="UTF-8"?>
<AudioDoc name="doc2" path="doc2.wav">
```

```
<SpeakerList>
<Speaker dur="33.36" gender="1" spkid="MS1" name="Tony Khan"/>
<Speaker dur="38.58" gender="2" spkid="FS2"/>
</SpeakerList>
```

```
<SegmentList>
<SegmentList>
<SpeechSegment Sime="0.50" etime="2.09" spkid="MS1" lang="eng-usa">
<Word stime="0.80" dur="0.39" conf="0.971"> This </Word>
<Word stime="1.46" dur="0.13" conf="0.971"> is </Word>
<Word stime="1.59" dur="0.10" conf="0.971"> the </Word>
<Word stime="1.59" dur="0.38" conf="0.971"> world </Word>
<Word stime="1.69" dur="0.38" conf="0.971"> world </Word>
<Word stime="2.05" dur="0.00" conf="0.594"> , </Word>
</SpeechSegment>
```

```
<SpeechSegment stime="4.12" etime="9.13" spkid="MS1" lang="eng-usa">
<Word stime="4.12" dur="0.12" conf="0.934"> co </Word>
<Word stime="4.27" dur="0.12" conf="0.934"> co </Word>
<Word stime="4.49" dur="0.38" conf="0.934"> production </Word>
<Word stime="4.87" dur="0.08" conf="0.934"> of </Word>
<Word stime="4.87" dur="0.08" conf="0.934"> to </Word>
<Word stime="4.9" dur="0.08" conf="0.934"> to </Word>
<Word stime="5.15" dur="0.39" conf="0.934"> be </Word>
<Word stime="5.54" dur="0.26" conf="0.934"> be </Word>
<Word stime="5.54" dur="0.26" conf="0.926"> world </Word>
<Word stime="5.64" dur="0.26" conf="0.44"> Service </Word>
<Word stime="5.47" dur="0.66" conf="0.568"> PRI </Word>
<Word stime="6.47" dur="0.66" conf="0.568"> PRI </Word>
<Word stime="6.47" dur="0.14" conf="0.917"> and </Word>
<Word stime="7.48" dur="0.14" conf="0.917"> and </Word>
```

Why Is Speech Processing Difficult?

Text: Continuous: Spontaneous: Pronunciation: I do not know why speech recognition is so difficult Idonotknowwhyspeechrecognitionissodifficult Idunnowhyspeechrecnitionsodifficult YdonatnowYspiCrEkxgnISxnIzsodIfIk∧It YdonowYspiCrEknISNsodIfxk∧I YdontnowYspiCrEkxnISNsodIfIk∧It YdxnowYspiCrEknISNsodIfxk∧It

(after lecture notes from T. Schultz)

Important variability factors:

Speaker	Acoustic environment
physical characteristics (gender,	background noise (cocktail party,)
age,), accent, emotional state,	room acoustic, signal capture
situation (lecture, conversation,	(microphone, channel,)
meeting,)	

STT System Development

Goal

Development of <u>generic technology</u>: speaker/task independent, robust (noise, microphone...)

- Lower error rates
- More varied found data with varied speaking styles, uncontrolled conditions: BN, BC, CTS, lectures, ...
- More languages covered
- Enriched STT output (case, punctuated output, accurate confidence scores, multiple hypotheses, topic tags, ...)

QUAERO 2011 STT Evaluation

cnrs

• STT assessed for 9 languages

- Primary Quaero languages: English, French, German
- Third evaluation for Russian & Spanish
- Second evaluation for Greek & Polish
- Baseline evaluation for Italian & Portuguese
- 3 hours of development data per language
- Evaluation guidelines
- Metrics: CI and CS word error rate, LNE scoring tools
- Total of 30 hours of test data in 2011
- 70/30, 50/50, 30/70 split broadcast news/conversation
- 91 STT submissions (from 4 sites)

CNTS

Mix of broadcast news and broadcast conversations Average, lowest and highest document WER

CI WER versus Type

Mix of broadcast news and broadcast conversations

- Acoustic models: HMMs (10-20M parameters), allophones (triphones), discriminative features (MLP), discriminative training
- Pronunciation dictionary with probabilities (30-50 phones), g2p, statistical
- Language models: statistical N-gram models (10-20M N-grams), model interpolation, connectionist LMs, text normalization
- Decoder: multipass decoding, unsupervised acoustic model adaptation, system combination (Rover, cross-system adaptation)
- Adaptation (unsupervised & supervised)

Data for Model Training

Data collection and transcription is costly

WER versus amount of data (hours)

How much does data bring?

50

- BN data, ASR2000
- Asymptotic behavior of the error rate
 - rapid progress on new problems (i.e. new data)
 - but slow progress on old problems (on average 6% per year)
- Addl data should cost less (need to learn to better use lowcost data)
- Need more varied data

LIMSI/Vocapia	Sys	tem		System
Language	2011	2012	Language	2012
German	18.0	16.4	Czech	18.7
Greek	17.0	17.0	Bulgarian	29.0
Italian	17.9	13.5	Hungarian	27.7
Spanish	16.1	15.2	Latvian	18.8
Russian	19.4	18.9	Luxembourgish	-
Polish	12.7	12.0	Romanian	15.1
Portuguese	23.7	17.4	Slovak	20.1

- 9 languages from 2011
- 7 additional languages (dev data only) no training data provided
- Case-insensitive WER on 2012 development data

- Speaker Diarization (Who spoke when?)
 - Speaker segmentation
 - Speaker segment clustering
 - Speaker identification using speaker model and speech transcription
 - Within and cross show
- Person identification in video: speaker diarization, OCR in video, face recognition, fusion
- Some specific uses:
 - precise timing of political interventions (debats televises).
 - searching a specific declaration of a politician
 - meeting transcription (very complex)

Cross-Show Speaker Diarization

cnrs

- Speaker diarization on interactive data
- Index/search a set of shows from the same source
- Contrast with single-show processing

General architecture

- Audio segmentation with GMM models
- Speaker change detection
- Agglomerative hierarchical clustering with BIC and/or SID
- Schemes: concatentation, show-based clustering followed by global clustering, incremental diarization

Improvements

- Selective clustering (minimal length constraint)
- Alternative acoustic features and fusion [⇒] 10% relative to last year's baseline
- Large variation across shows
- Main sources of errors in more interactive shows:

short turns, laugh and applause, overlapping speech

Global BIC + Global CLR

Local BIC + Global CLR

Limitations of glocal schemes:

- Process all shows simultaneously
- In real application, shows are presented to the system over time

Alternative incremental approach: local BIC, incremental CLR

Only information from previous shows available (no prior information for first show)

from V.A. Tran et al, Interspeech 2011

Language		Singl	e Show			Cros	s-show	
	Miss	FA	Conf	DER	Miss	FA	Conf	DER
English	0.4	0.7	10.5	11.6	0.3	0.7	21.3	22.5
French	2.0	0.4	14.0	16.4	4.1	0.8	21.5	26.7
German	2.5	1.9	13.8	18.3	2.9	2.5	20.6	26.1

- Cross-show diarization error is about twice single show
- Most errors are confusions

VOCAPIA Speech Technologies

Speaker overview

7

Now can a country surver of children are are being raised in homes where suit much hader to succeed secondarially. That's the time there there are object in surging event households than it is the parent homes. We can have influence government, closer tax indive here that .All times out perioding time. The government, everyting all to have the subprovinging Landin or home are along perioding to that an influence periodic sector of the substance and the substance statistic influence. The substance are along the substance region that an influence region

and as an doctor IVe deal with bith control pils and contraception. For a long time, This car is a consequence fact control of medical care and model all insurance and there we fight over how doctate how this should be the stream is sort of the in schools was the government takes the schools, especially the federal level. Then there is no right position the half aligned which parys: Are you at lot growing you can all defaits. The proteins the government's getting

Jose Bove, Beatrice Laurent Delahousse, Jacques Schonberg, Jean-Marie le Pen Chirac

David Pujadas, Nicolas Sarkozy

Segolene Royal, Francois Bayrou, David Pujadas, Nicolas Sarkozy

Francois Bayrou, David Pujadas, Jean-Louis Borloo, Laurent Delahousse

- Phonotactic language recognition systems
- Context-dependent phone recognizers better performance than context independent
- But the computational requirements are high (several times real time)
- Extensive experimental work to assess the effect of several parameters and schemes on both system performance and processing speed (acoustic scale factor, phone insertion penalty, LM prunning, beam search width, ...).
- Language model smoothing techniques
- Discriminative features (MLP)
- Updated Quaero LID system used to identify languages in TrecVID 2012 and MediaEval 2012 data sets

- Human listeners significantly outperform machines on speech transcription tasks (5 to 6 times better than machines) [Greenberg, 1996; Lipmann, 1997; Pools, 1999]
- Variation handling: machines have trouble with rare events that are poorly modeled (pronunciation variants, disfluencies, ungrammatical sentences, noise, native and non-native accents etc.)
- Information sources
 - Humans use "higher-level" knowledge
 - Human listeners and ASR systems likely use different acoustic cues
- Speech Communication (2007) special issue on Bridging the Gap: HSR vs ASR

• Analysis of speech regions involving ASR errors

- To increase knowledge of speech variation
- To identify potential shortcomings in speech models of ASR systems
- Focus on frequent short, acoustically poor, function words subjects to contextual homophony in French and English

Sources of ASR errors

- Intrinsic spoken language ambiguities (language bias)
- Simplified speech models (model bias)
- Role of context (Shinozaki & Furui, 2003, Vasilescu et al, 2009, 2011)

Objective: Assess the role of increasing context in disambiguating problematic targets

- et, est, des, les, à, a (French)
- and, in, the, a, is, was (English)

Experimental protocol:

- English Quaero 2009 (24% WER) and 2010 (17% WER) data
- 4 distinct sets of 200 (French) and 200 (English) stimuli
- Each stimulus is presented in n=3, 5, 7 and 9-grams
- One stimulus per context length in each test
- 90% of stimuli with ASR error on central target word
- Different types of ASR errors (deletions, substitutions, insertions)
- 40 native French subjects, 76 native English subjects

ASR	error	English
		so the review panel WAS headed by David Davis
	bun	the review panel WAS headed by David
sub	Пур	review panel WAS headed by
		panel WAS headed
	ref	so the review panel IS headed by David Davis
ASR	error	French
ASR	error	French comme la région Auvergne EST légitime pour communiquer auprès
ASR	error	French comme la région Auvergne EST légitime pour communiquer auprès la région Auvergne EST légitime pour communiquer
ASR sub	error hyp	French comme la région Auvergne EST légitime pour communiquer auprès la région Auvergne EST légitime pour communiquer région Auvergne EST lýitime pour
ASR sub	error hyp	French comme la région Auvergne EST légitime pour communiquer auprès la région Auvergne EST légitime pour communiquer région Auvergne EST légitime pour Auvergne EST légitime

Perceptual results

- Target words pose problems for humans: Human WER 21.5% French, 22.5% English
- Higher human error rate on stimuli with ASR errors

- Strong reduction of human WER with increasing context
- Increasing from 3-gram to 5-gram gives largest gain
- Humans more errors for ASR deletions (poor acoustic information), least for ASR insertions

Conclusions and Outstanding Challenges

- Still a large gap between human and machine performances
- Incorporating semantic and world knowledge in models
- E.g. the punctuation task: "woman without her man is nothing"
 - Woman, without her man, is nothing.
 - Woman, without her, man is nothing.
- Automatic learning from data
- Building successful applications with imperfect technology
 - User in the loop
 - Using dialog as humans do
- Speech and language technologies will continue to play a major role

Example Quaero Applications

- Voxalead News (mulltimedia news search) [voxaleadnews.labs.exalead.com]
 - keyword search in speech transcripts (content-based search)
 - named entity detection (people, organisations, locations)
- Media monitoring [yacast.fr]
 - Audio and video fingerprinting to identify advertising and music
 - Automatic speaking time measure (for politicians), ASR, archive
- Music Mashup (music search engine) [muma.labs.exalead.com]
 - keyword search (artist name, song lyrics, ...)
 - search by sequence of chords, genre, mood
- and more: real-time lecture translation, Audiobook and e-book synchronisation, France 24 HD Player, Presidency web site ...
- Quaero main site: www.quaero.org

Lecture Translator (KIT)

